Monday, 19 August 2013

CHAPTER NINE:ENABLING THE ORGANIZATION

Reason for Growth of Decision Making Information System

1. People need to analyze large amounts of information :- improvement in technology itself, innovations in communication, and globalisation have resulted in a dramatic increase in the alternatives and dimension people need to consider when making a decision or appraising an opportunity.

2. People must make decision quickly :- time is of the essence and people simply do not have time to sift through all the information manually.

3. People must apply sophisticated analysis technique such as modelling and forecasting to make good decision :- information system substantially reduce the time required to perform this sophisticated analysis technique.

4. People must protect the corporate asset of organizational information :- information systems offer the security required to ensure organization information remains safe.

Model - a simplified representation or abstraction of reality.
Transaction Processing System

Ø  Moving up through the organizational pyramid users move from requiring transactional information to analytical information

 Ø  Transaction processing system – the basic business system that serves the operational level (analysis) in an organization
Ø  Online transaction processing (OLTP) – the capturing of transaction and event information using technology to (1) process the information according to defined business rules, (2) store the information, (3) update existing information to reflect the new information
Ø  Online analytical processing (OLAP) – the manipulation of information to create business intelligence in support of strategic decision making


Decision support systems
Ø  Decision support system (DSS) – models information to support managers and business professionals during the decision-making process
Ø  Three quantitative models used by DSSs include;
1.       Sensitivity analysis – the study of the impact that changes in one (or more) parts of the model have on other parts of the model
2.       What-if analysis – checks the impact of a change in an assumption on the proposed solution
Goal-seeking analysis – finds the inputs necessary to achieve a goal such as a desired level of outputs


Executive information system
Ø  Executive information system (EIS) – A specialized DSS that supports senior level executives within the organization
Ø  Most EISs offering the following capabilities;
-          Consolidation – involves the aggregation of information and features simple roll-ups to complex groupings of interrelated information
-          Drill-down – enables users to get details, and details of information
-          Slice-and-dice – looks at information from different perspectives
Ø  Interaction between a TPS and an EIS

Ø  Digital dashboard – integrates information from multiple components and presents it in a united display
Artificial intelligence (AI)
Ø  The ultimate goal of AI is the ability to build a system that can mimic human intelligence
Ø  Intelligent system – various commercial applications of artificial intelligence
Ø  Artificial intelligence (AI) – simulates human intelligence such as the ability to reason and learn
Ø  Four most common categories of AI include;
1.       Expert system – computerized advisory programs that imitate the reasoning processes of experts in solving difficult problems
2.       Neural network – attempts to emulate the way the human brain works
o   Fuzzy logic – a mathematical method of handling imprecise or subjective information
3.       Genetic algorithm – an artificial intelligent system that mimics the evolutionary, survival-of-the-fittest process to generate increasingly better solutions to a problem
4.       Intelligent agent – special-purposed knowledge-based information system that accomplishes specific tasks on behalf of its users

Data Mining

Ø  Data-mining software includes many forms of AI such as neutral networks and expert systems 


No comments:

Post a Comment